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BOUNDARY VALUE PROBLEMS CONNECTED WITH A
POTENTIAL FLOW IN A DOUBLE-CONNECTED DOMAIN

©LEoNID R. VOLEVICH

The lecture is devoted to the boundary value problems arising in mathematical
analysis of a plane subsonic flow in a simply or double-connected domain with
every component of the boundary having the leading edge. The Newton’s lin-
earization and the conformal mapping of the domain permit to reduce the original
physical problem to a sequence of boundary value problems in a rectangular do-
main. The latter problems can be inverstigated numerically using finite elements
of high order (bicubic elements). But in the present lecture we shall not dwell
on the computational side (see [1-5]) concentrating on the mathematical side of
the problem. There is an extensive literature devoted to potential flows. A lot of
referenses in this literature can be found by the reader in [6].

§1. Mathematical formulation of a potential flow problem.

1.1 Full potential equation. We shall treat non-stationary, inviscid, irrotational
adiabatic and isentropic flow of an ideal gas in R3. Such a flow is characterized by
conservation of the mass equation

fi

d— + div(pv) = 0,

the momentum equation

)+ ‘TP—(]
P

and the adiabatic isentropic ideal gas law: P = constp®. Here, as usual, p, P and
. v are correspondingly the density, pressure and the velocity of the flow. If the flow
is irrotational, i.e. rot v = 0, then the velocity possesses a potential, v = Vi, and
conservation of mass equation may be rewritten in the form:

a :

22+ div(pVy) = 0. (1.1)
at

If we substitute v = Vi in the momentum conservation equation and suppose that

the flow is stable at infinity we obtain (after integration) the Cauchy-Lagrange

integral:
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where pog, Voo and My, = [veo /@ are, respectively, values at infinity of p, v, a
(sound velocity) and M (Mach I]llmllt‘l‘) Without loss generality we can suppose
that poe = |vee| = 1 (in the opposite case we can change the scales). Then solving
equation (2) for p we obtain

W=

p= (145 - me - -nmze) T 0

Differentiating this equation with respect to { and substituting the result in equa-
tion (1) we come to non-stationary potential equation

M2 0% (on + (Vo, Vi) = div(pV) = 0. (1.4)
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1.2 Initial and boundary value problem. Let G be a bounded domain in 2
with smooth boundary 8G and v is the internal normal to 9G. In B3\ G we seek
a solution ¢(x, 1) of equation (4) satisfying the boundary condition

?—ﬁ =07 (1.5)
APy
and the condition at infinity
(V). 1) = v, o] — 50, (1.6)

where v, is the velocity of the onset flow. For t = 0 we pose the initial conditions

<P1 = wo(r), ¢

t=10

= ié‘l('«")‘_ (1.7)

t=0

Let ¢ (x) = (vas, ¢) be the potential of the onset flow. We pose

'\9(1':!) = @m("‘) s ‘b("t)

Then &(x,1) is the solution of the problem
Moo p? (@1 = (V(® = 000 ), VO,)) = div(pV (@ — 90 )) = 0,

P

w aG = ('?.’m.u?, [Ve(r,t)| = 0, |z — .

We can assume, that the function ®(z, t) for every fixed { is an element of Sobolev’s
space H': ®(x, t) € HY(R3\ G), vVt > 0.
1.3 Semi-integral form of the problem (1.4)—(1.7). When we construct a
discrete approximation of the problem under investigation we usually deal with
the integral form of the problem. We can state the following

Proposition. The smooth function ®(z,1), ®, &, , ¢,,. b, € L.(R?\ G),
is a solution of (1.4’)-(1.6') if and only if the integral identity

.[/f[‘l""i”zdk(“’“ —(V(® - D). VO, )t

BANG

PV(P — ), Vw) + (Ve Vu)]dr - //(cw Wwds =0

a6

(1.8)

holds for every test function w(x). The proposition reduces the boundary and
initial problem for equation (1.4) to the integral equation (1.8) with the initial
condition (1.7).

1.4 The stationary problem in the integral form and the variational
principle. If the potential of the flow does not depend on time, the problem
(1.7), (1.8) transforms into the steady problem

f/ (pV(® — v ) + Voo, Vw)dr — //(1.!90, Vywds = 0, Yw (1.9)
NG a6
where
E=1ii, ek
;;:(1+T..w¢;(1_1V(<b—,-:~;)l') e (1.10)
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It is possible to obtain equat-ion (1.9) by means of the variational principle formu-
lated by Bateman in the case of interior flows and by M.Shiffman [7] in the plane
case. The stationary points of the functional

F(®) = f/f[r(w(q: Yoo )| = F(1) + (Voo V)] da:—ff (¢oo, v)Pds,

EN\G

where F(q) = ﬁ;" sp(s)ds, p(q) = ( *;li’lff\,fc(l - qz))ﬁ, are the solutions of
relation (1.9).

Indeed, if @ is a stationary point and w is an arbitrary test function, then

d
ZF (@ +ew)

=0. (1.11)

e=0
Taking note of the equality

= p(IV(® = 900)I)(V(P — poc), V)

e=0

d—‘é}"(l?’(@ +ew — 9a)])

we obtain that (1.11) is equivalent to (1.9).
1.5 Linearization of the problem (1.9). Newton’s method.
Denote by F(®,w) the left-hand side of (1.9). Then to solve the equation

F(®,w) =0, , Yw € H'(R?*\ G) , (1.12)
we use Newton’s method. Suppose that & = &(*) is the n-th iteration of the

solution and ®("+1) = & + ¥. According to Newton’s method the correction ¥ is
a solution of the linear equation

where
A 1y — d Y E =
F(®.¥,w)= 2 F(®+cbw)|,_, =

/U /{’)@}(W*W)“ M2 5 ~H(@)(V(® = poo), V)V, Vo) dz. 1Y)

ENG

In other words, every step of Newton’s iterations is reduced to solving a linear
second order equation

div(pVV¥) + .. . (lower terms) =

with zero Neumann condition on the boundary 8G. As for the first iteration, in
this case f = 0, and Neumann’s boundary condition is nonzero.

§2.Flow past a profile with an edge.
2.1 Formulation of the problem. Now we shall consider two dimensional flows
in the plane ®? with the coordinates 2 and y. Suppose that G € B? is a bounded
domain (wing section) with a boundary G which is a smooth curve up to some
point zp = (zo,yo) (trailing edge) where the tangents to the curve form an acute
angle.

Let ¢(z,y) be the potential of the flow in the exterior of G. Then it satisfies
the potential equation '

9 Bt,o
( ] 3J 31}) 0, (2.1)

44



nonpenetration condition on the boundary

9y

O |56\ 20

and the Kutta-Zhukovsii condition on the edge
|Ve(z,y)| < o0, (z,y) €R2\G. (2.3)

The conditions (2.1), (2.2) and (2.3) must be complemented by the condition at
infinity: :
Vo(z,y) — v = (cosa,sina) as |z|+ |y| — oo, (2.4)
where a is the angle of attack.
As a rule, the function ¢ satisfying the above condition is not univalent, i.e.

1 :
Tzé-;]d(p;éo, (2.5)
C

where C is a closed curve in R?\ G enveloping G. The number v from (2.5) is
circulation; it is an additional parameter to satisfy the Kutta-Zhukovskii condition.
2.2 Transformation of the domain of the flow. According to whell- known
Riemann’s theorem there exists a conformal map z = F(w) of the unit disk {w €
C,|w| < 1} onto the exterior of G in the plane z = z +iy. This map transforms the
circle {w € C, |w| = 1} into the boundary G, and we can suppose that the trailing
edge zg is the image of the point €™ : F(e™) = zo. On the other hand, the function
w = —ei¢, ¢ = € + in transforms the half-strip Il = {¢ € C,0 < £ < 27,7 > 0}
in the ¢-plane into the unit disk in the w-plane, the unit circle {w € C, |w| = 1}
is the image of the segment {0 < & < 27, n = 0}. The superposition of these
functions f(¢) = F(e~'¢) defines the conformal mapping on the half-strip [I onto
the exterior of G :

1= R2\G (¢ =€ +in— z = [(C)). | (2.6)

Under this mapping the image of the segment {0 < € < 27,7 = 0} is 9G and
f(ﬂ') = Zp.

The transformation (2.6) in the explict form can be obtained only for very
special domains G. For the numerical calculations of the flow in an arbitrary
domain the numerical approximations of these transorms can be used. In our
calcuations [2] and [3] we used the method of K.I.Babenko (see [8], p. 374-379).
2.3 Change of variables in the problem (2.1)-(2.4). Let z = z(£,n) +
iy(€,m) = f(€ +in) be the transformation (2.6). We keep the notation ¢ for the
potential in the new variables (£, n):

©(€,n) = ¢(Ref (£ + in), Imf (£ + in)).

For given ¥ we define the onflow potential with this circulation:

Poo(§,m,7) = x(§,m) cosa + y(§, m)sina + 7§ (2.7)

and pose
e(€,m) = oo (§,m,7) = B(E,m,7)- (2.8)

As the transformation of variables (£, 7) — (z, y) is defined by means of harmonic
functions z(€,n), y(§,n) and onflow potential (2.7) is also a harmonic function,
equation (2.1) in these variables takes form

85 B g 8 g D)
3?(3(‘1’)—3?*‘_“) i 3—,?(3(‘1')——”5?'““) =0, (2.9)
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where o .
S SR T
R@®) = (14 =M1~ V@ - vu)Pe™)™,  (29)

and

9(&,m) = |f (€ +in)|

is the Jacobian of our transformation. Nonpenetration condition (2.2) is reduced
to the Neumann’s condition for n = 0:

%? = z,(£,0) cosax + y,(€,0)sin . (2.10)
7 n=0

To this condition we must add the periodicity condition and the condition of decay
of ® for n — oo,

®(0,n) = ®(27,7), ®€ HY(I). (2.11)

'Now let us discuss the Kutta-Zhukovskii (K-Z) condition. We have |V, ,¢| =

N(&.n)‘i"[("’g + yg)'%, As the function z¢, y¢, z,, y, are equal to zero at the

preimage (7,0) of the trailing edge zo, we have that K-Z condition is satisfied if
and only if

(2 + 92)(m,0) = 0.

As y(m,0) = 0 according to the nonpenetration condition (2.10), we come to the
final form of the Kutta-Zhukovskii condition

(I)E(?T, O) -7 = 0 . (212)

Resume. The conformal mapping (2.6) permits us to reduce the problem (2.1)-
(2.4) to the following boundary value problem: find function ®(&,7,7) and cir-
culation ¥ from equations (2.9) and (2.9'), the boundary conditions (2.10), (2.11)
and the additional condition (2.12).

2.4 Integral form of the problem (2.9)-(2.13). Multiplying equation (2.8)
by a test function and integrating by parts we reduce the problem (2.9)- (2.13) to
the follouing one: find the periodic with respect to € function ® and the number
v from the following relations:

F(®,v,w) =0, Yw e H(I), (2.13)
Pe(m,0) -7 =0, (2.14)
where
F(®,vyw) = ]f(R(CI))V((l) —zcosa — ysina — vE)+
n
2 (215)
V(zcosa + ysina + v€), Vw)dEdn + ]((a:,} cos o + iy sin a)w)(f,{)]df_
0

2.5 Linearization of the problem (2.13)-(2.15). Suppose that (®,v) =
(@), 4(")) is the n-iteration of the solution of the problem (2.13)-(2.15). We
seek the correction ($(*+1) 4(n+1)) = (@ 4+ W + + 6) of this iteration by Newton’s
method:

F(®,v,¥,6,w) = d—if'(‘l’-i'slll,'y-i-sé,w) =0 (2.16)

e=0
We(r,0)—6=0. (2.17)
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The direct ealeulation shows that the left-hand side of (2.16") is equal to

//[m«b. YNV, V) = M2 g7 2R 5 (@, 7)(VY, V(D — poc)) X
i

(Ve V(D — oo ))]dedy + & //[—m.-,},,-& = e (2.18)
BT

M2 g2 R (@ )P — 00)e(V(P — ), V)] dEdn.

From (2.18) it follows that (2.16) is a week formulation of the following problem
{(depending on @ and 5 ):

RPNV + (D, 7)0 = —F(D, 7). (2.16%)

Here R is a second order partial differential operator defined on functions ¥ €
H'(11) periodic with respect to £ and satisfying zero Neumann's condition for
n = 0. the first term in the (2.18) is the integral form of this operator. Equation
(2.17) can be rewritten in the form

L(¥) - 8=0 0 |

where L is a linear functional acting on ¥,
Suppose that the opérator R has the inverse R=1. Applying this operator to
(2.16") we obtain

W= R, ) F(D,7) = R (. 4) 11 (7).
Substituting the last expression in (2.17") we can evaluate &

—L(R-1F)
g atUR ) 216
(¥ L(R-TH) e

Resume. The mechanical problem of the potential flow past a profile with an
edge is reduced to the sequence of linear boundary value problems. On cach step
of the iterative process to obtain the potential and the circulation we twice solve
the same boundary value problem with two different right-hand sides.

2.7 Zhukovskii formula. As a rule, the main goal of solving the flow problem
is to find the lift and the drug, ie.

i [P(I'.r. Fii—= /..-“(."Ir_.r (2.20)
aG 3G
where the pressure P is given by the relation
1 bl e =
e L paiiogan caw oo 221
’( ..-w;-;k[ g, }] (b

The famous Zhukovskii formulas which connect the lift, the drug and the circula-
tion 7 have the form

R, = -Tcosa, K;=Tsina. =27 (2.22)
Remark. In numerical analysis of the problem we obtain the approximate value of

the circulation and approximation of the potential ¢. The relation (2.21) permits
us to calculate the pressure and its integral along the profile 9G' . In other words, we
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can independently calculate the left and right-hand sides of (2.22). The differences
of these values provide important characteristics of the Illiltlt‘l'l('.d] solution.

§3. Potential lows in double connected domains.

3.1 On (r,y) plane we consider a potential low in the exterior of two bounded
domains Gy and 'y ( wing sections ). We assume that the wings and, hence, these
wing sections are smooth except for one corner at the trailing edge of Gy and Gy
at the points z; and zy respectively.

General mathematical formulation of the problem is the same as in the case of
simiply-connected domain, the only (formal) difference is connected with the fact.
that the onflow potential depends (linearly) on the circulations around ¢y and Gv.
Remark. The problem of a flow around an airfoil in the presence of the earth is
trivially reduced to the above problem. In this case we seek the solution of the
potential equation in the exterior of the domain G in the half-plane y > 0.

On the boundary &G and the line y = 0 the nonpenetration condition must
e fullilled. By symmetry the solution of this problem can be obtained from the
solution corresponding to the exterrior of the bounded domains & and ¢, where
G’ is symmetric to G with respect to the a-axis, in this case the onflow is parallel
Lo r-axis.

3.2 According to the general theory of holomorphic functions for every double-
connected domain on z = r + iy plane there exists a real number r < 1 and
a univalent holomorphic function F(w) which gives conformal mapping of the
circular annulus K = {w € T r < |w| € 1} onto T\ (G U G). The profiles 96
and Oy are the images of the circles {lw] = r} and {|w]| = 1}, respectively.

As the exterior of &) U (3 contains infinity there exists a point wg such that
Fwy) = oo, We can suppose that wy b«.lung.,s to the real axis ( in opposite case
we perform the corresponding rotation of the annulus). The last condition defines
uniquely the map F. Let us consider the superposition of F' and the function
w = exp(i€) giving the map

: : : 1
M={(=£E4+in. 0KEL27, 0Ky gw) =K, w=1In-.
7

Then we obtain the function = = f(¢) = F(¢'“) which defines the conforinal
mapping of M onto C\ (G, U (.r‘_:). The a(!g.,nn.‘m.s {0 £ €< 2m =0} amd
{0 < & <27, y=w} are the preimages of G and dGa, the points ¢; and (. nie
the preimages of the trailing edges z; and zo, and ik, 27 + ik, 0 < k < w are liic
preimages of the infinity.

The number r depends on the domain C\ (G U Gy) and is called the conformal
radius of the domain. This number is not known in advance and can be obtained
simultaneonsly with the conformal mapping. In the numerical analysis of the flows
the numerical approximation of the map f is used.

3.3 As in §2 we seek the solution of the flow problem in the form ¢ = ¢, — @,
where g, depends on the angle of attack o and circulations v; and 4:

Yoo = T(E, n)cosa + Y&, n)sin a + 1108 + o0l

where the circulation of -,.:'l_r'_fj) around a contour, containing 9G} equals to 8], j
k=12

As f(ik) = f(27 + ik) = oc, e (&, ) — ¢ when £ + in — ik, 27 + ik and &
defined on z-plane tends to zero at infinity, so it is reasonable to suppose that the
function ®(£, n) satisfies the following condition:

Q0. k) = P27, k) =0 (3.1)

Now we come to the following problem: find the triple {®,4;, 7.} satisfying the
equation

9 NP — p) d ( AP - pa) e
e oL b s [ e =) HE
e ('ﬂ € ) 23 dan & in ; (9-2)
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condition (3.1) and the following boundary conditions: (0. #5) = ®(27. n).

b _
=0, —(® ~ ¢ )(&.0)=0j=1,2

A2 = )|
|u:ii_w HE

Ay

If we seek the solution by means of Newton'’s method, we come to the sequence of
the problems of the form

RY + &M + 81y = I, {3.3)

Li(\]‘l} + (.I'“(”| ar ﬂ'['_gl’?'_g = 0, L_;(‘l’} + H-'_g[{':‘| + r.'g:_u";_; =} r,_:i. 1)

where R is the linear partial differential operator acting on functions ¥ in |l
satisfying the periodicity condition with respect to £, the homogenous Neumann
condition for n = 0,w and the condition (3.1). and L; and L. are the continuous
lincar functionals. 1 we know the operator R™!, we can easily solve the last
problem and find ¥, 6, and d..
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